
RunParallel

An auto-parallelizing runtime
for your code

TVP LLC

Russia

Compute architectures

2/9

Accelerators

NVidia Maxwell

Intel MIC

AMD GCN

x86

Multicore CPUsHeterogeneous
Clusters

GPU

An Introduction
• What is it?

• An auto-parallelizing runtime for your code written in Java.

• What is the purpose of the project?
• Provide a unified technology to program all the variety of modern

HPC-systems.

• Why this tool?
• New methods to compute better space-time mappings during

automatic parallelization.

• Just-In-Time parallelization: your implementation is always cross-
platform.

• Heterogeneous clusters with accelerators are supported.

3/9

Existing parallelizing systems

4/9

Tool Active
development

Scheduling and
placement
optimization for data
and computations

State-of-art
polyhedron model
methods

SAAS Price Supported architectures

ОРС Yes Yes No No 0 x86-clusters, GPU NVidia

DVM Yes No No No 0 x86-clusters, GPU

LooPo No Yes No No 0 x86-clusters

Pluto Yes Yes Yes No 0 x86-servers, GPU NVidia

PIPS Yes Yes Yes No 0 x86-clusters, GPU

PoCC No Yes Uses Pluto

Polly Yes Yes Pluto + LooPo No 0 LLVM

Cetus Yes No No No 0 x86-servers

PGI Yes Yes Unknown No >$900/year x86-clusters, GPU

CAPS No Yes No No Bankrupt x86-clusters, GPU

Intel
Parallel
Studio

Yes No No No New:
$1,449/year
Renewal:
$499/year

x86-clusters, Intel Xeon PHI

RunParallel Yes Yes Yes Yes One-time
$100
Subscription
$400/6 months

Heterogeneous clusters,
x86, SMP, NUMA, NVidia
GPU, AMD GPU, Intel Xeon
PHI

Features and disadvantages of the
analogs
• Polyhedron model is the common mathematical

background for all the free compilers and tools.

• All the compilers do static compilation only.
• A binary image is not portable.

• Possible obstacles to the use of polyhedron model:
• Not all the parameters may be defined in compile-time.

• Non-affine array indices.

• None of the compiler does cover all the variety of
modern computing hardware – accelerators and
systems with shared and distributed memory.

5/9

Programming HPC-systems today and tomorrow

6/9

Distributed memory systems
- MPI

GPU AMD –
OpenCL/OpenACC

GPU NVidia –
OpenCL/CUDA/OpenACC

Intel MIC –
OpenCL/OpenMP/MPI

Today – a bunch of technologies, compilers, languages, implementations of the single program

Tomorrow – a unified runtime, a single language, a single implementation of the program

JIT-compilation

OpenMP C
OpenCL C

OpenCL C
x86_64 ASM + MPI Calls

javac
IR

Java

Parallelization phases within JIT-
compilation mechanism

7/9

Program model
construction

Dependency
analysis

Polyhedron model
optimizations

Tiling

AST Dependence
polyhedrons

Schedules, placements

Code generation
Tiles IR

OpenMP COpenCL C

IR

MPI-calls

MPI
instrumentation

IR

Efficiency and performance
background
• New cost model to choose better schedules and placements

for computations during automatic parallelizing. Subjective
preferences are defined by weighting coefficients in linear
form of scalarized multi-objective problem. This allows to
specify subjective preferences more precisely in
contradistinction to classic methods relying on lexicographic
optimization

• New methods to compute space-time mappings intended
for reducing data reuse distance in time and space domains.
• for SMP and multicore CPUs;

• for NUMA and clusters.

• Just-In-Time parallelization of non-affine programs.

8/9

Want to try? Contact us:
mailto:support@runparallel.net

mailto:support@runparallel.net

