
Dynamic Parallelization of Computational Code as a Phase of 
Just-in-Time Compilation

A. Lebedev
Rybinsk State Aviation Technical University, Rybinsk, Russia

tementy@gmail.com

Abstract An auto-parallelizing runtime

Motivation

LU-decomposition example
A solution to improve portability of automatically 
parallelized code, extend applicability of polyhedron 
model, organize dynamic load balancing between host 
system and accelerator is reached via on-the-fly 
transformations within JIT mechanisms of virtual 
execution system. An architecture of parallelizing 
optimizer module for ILDJIT is discussed. Transformed for 
heterogeneous execution LU-decomposition kernel 
illustrates significant speedup due to offload acceleration.

Writing an efficient code to expose compute capabilities 
of parallel processor often leads to significant challenges. 
The task becomes more complex when targeting 
heterogeneous computing systems. The project aims to 
simplify programming of modern parallel architectures: 
multicore CPUs and various accelerators, such as 
AMD/NVidia GPUs and Intel Xeon Phi.

We propose a solution based on idea of virtual execution 
environment to address stated problems. 
• All the parameters (technically - variables) become 

defined in runtime - the polyhedron model could be 
applied to wider set of programs, not only strict linear 
ones.

• Code portability is now the problem of execution 
environment, not the programmer.

• Platform-specific optimizations and heuristics could be 
applied within JIT mechanism in order to get best 
performance of parallelized code.

We chose ILDJIT – an open-source .NET virtual execution 
system and develop parallelizing extension for it.
We have integrated state-of-art optimization and analysis 
approaches based on polyhedron model to the optimizer. 
A code to be parallelized needs to be parsed with 
polyhedron extractor firstly: for loops with induction 
variables, statements with (necessary) affine indexes are 
recognized and then transformed into polyhedral 
definition of statement domains. Space-time mapping 
leading to maximal parallelism is then computed. 
Resulting parallel programs are saved in on-disk storage 
called compute cache at the first time call to avoid 
unnecessary recompilation for already processed 
subprogram and its parameters in future.

Work was accomplished with hardware supplied by Intel Corporation 
to Rybinsk State Aviation Technical University. 

Acknowledgements

NVidia CUDA GPUs

Intel MIC

AMD GPUs

Multicore CPUs

HPC microarchitectures

A very attractive approach addressing the issue is 
automatic code parallelization. There is a variety of 
modern and mature parallelizing compilers – commercial 
(PGI, CAPS, Intel) and free (LOOPO, PLUTO, PIPS, CETUS). 
We state following facts for them:
• Polyhedron model is a common mathematical 

background for open-source solutions.
• All the compilers perform static compilation (code is 

compiled once for a particular parallel 
microarchitecture).

The second position reveals perceptive drawbacks of 
commonly used approach:
• Binary image is not portable w. r. t. parallel 

architectures.
• Too difficult organization of load balancing between 

host and accelerator.
• There could be difficulties in polyhedron model 

applying: not all model parameters may be defined 
statically or derived in compile-time.

Goals
We rely on strong mathematical background of 
polyhedron model and work for improving of common 
practices of using parallelizing compilers to:
• reach the portability of automatically parallelized code 

w. r. t. parallel architectures - the code written once 
must be runnable on several (supported) parallel 
architectures without full manual recompilation.

• shift the polyhedron model use to the extreme to deal 
with statically undefined model parameters.

Program 
analyzer

Dependence 
analysis

Space-time 
mapping

Heterogeneous 
tiling

AST Dependence
polyhedrons

Schedule, 
placement

Code 
generation

Tiles ILDJIT IR

OpenMP COpenCL C

ILDJIT IR

Phases of parallelization added to 
JIT mechanism of ILDJIT

Dynamic load balancing
A heuristic is to choose space-time mapping uniformly 
exposing fine-grained parallelism w.r.t. most of time 
steps (if possible), then determine representative 
benchmark tile size and estimate time parameters in 
order to compute α value for every time step. The code 
generation phase should be followed by instrumentation: 
runtime estimations and dynamic workload distribution 
should be injected into target program.
• A portion of virtual processors (say, 훼 from 푁) on 

every time step should be mapped to accelerator, if 
reasonable. We also should leave one CPU core for 
accelerator management. Rest 푁 − 훼 virtual 
processors should be mapped to free CPU cores.

• Let 푇 = 푑푒푝 + 훼 ∗ 푣푝 be accelerator time, 
where 푑푒푝 stands for input dependencies 
communication overhead and 푣푝 is average 
processing cost of computations corresponding to one 
virtual processor, including communication.

• Let 푇 = ∗ 푣푝 be CPU time, where 
푁푃 is the number of CPU cores, 푣푝 is above, 
푝푟표푏푒푑 is the number of slices processed while 
estimating time parameters.

• All the parameters we suggest to estimate empirically. 
Total execution cost is max(푇 , 푇 ). It means that 
we look for the point α for which 푇 =푇 holds. 
Usage of the accelerator is reasonable if and only if 
α>1.

훼 =
푁 − 푝푟표푏푒푑 ∗ 푣푝 − (푁푃 − 1) ∗ 푑푒푝

푣푝 ∗ 푁푃 − 1 + 푣푝

Results

For dynamic load balancing case we collected values of 
alpha during run time (adaptive variant) and tried to 
approximate the regression with quadratic polynomial 
(approximated variant):
−4.5 ∗ 10 ∗ 푘 − 0.00189496 ∗ 푘 + 46.22040315.
Approximated variant performs faster because of 
eliminated estimations. Unfortunately, we had no 
success with Xeon PHI system – latencies of data 
transition were too large when compared to NVidia 
platform.

C# version:
for (int k=0; k<N; k++)
{
for (int j=k+1; j<N; j++)
A[j][k] /= A[k][k];

for (int i=k+1; i<N; i++)
for (int j=k+1; j<N; j++)
A[i][j] -= A[i][k]*A[k][j];

}

Underlined loops are parallel – their iterations could be 
mapped to different virtual and physical processors.
k-loop is considered as time-loop.
We made benchmarks for square matrix of order 213 of 
doubles on two different heterogeneous computing 
systems:
• Intel Xeon X5650 + NVidia Tesla M2050
• Parallelization for CPU cores
• Dynamic load balancing between CPU cores and 

GPU
• Pure GPU offload

• Intel Xeon-E5 2690 + Intel Xeon Phi 3100
• Parallelization for CPU cores
• Pure Xeon Phi offload

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00

0
10
20
30
40
50

Time step, №

Offloaded computations, %

Adaptive Approximated

4,56 6,74 7,03

39,01

6,84
24,68

0
20
40
60

Xeon X5650 6
threads

Xeon X5650 5
threads + Tesla

M2050 (adaptive)

Xeon X5650 5
threads + Tesla

M2050
(approximated)

Tesla M2050 Xeon E5-2690 8
threads

Xeon PHI 3100

Speedup after parallelization w.r.t. host CPU 
single thread

• The solution allows to write sequential code once 
using high-level language (we consider C# for now) 
and then run it in parallel on different architectures 
without full manual recompilation.

• Significant speedup is achieved with polyhedral 
parallelization and adaptive load balancing between 
host and accelerator on every time step.

One can benefit from offloading of computations onto 
modern accelerators; but should be careful with 
scenarios with intensive data transition over PCI-E bus. 
While NVidia platform allows dynamic load balancing, 
this is not an option because pure offload could perform 
better. Xeon PHI platform works well with pure offload 
and big data transitions hiding huge latencies.

퐴 = 퐿푈,
푎 , 푎 , 푎 ,
푎 , 푎 , 푎 ,
푎 , 푎 , 푎 ,

=
푙 , 0 0
푙 , 푙 , 0
푙 , 푙 , 푙 ,

푢 , 푢 , 푢 ,
0 푢 , 푢 ,
0 0 푢 ,

.


